DatasheetsPDF.com

MC74F569 Dataheets PDF



Part Number MC74F569
Manufacturers Motorola
Logo Motorola
Description (MC74F568 / MC74F569) 4-BIT BIDIRECTIONAL COUNTERS(WITH 3-STATE OUTPUTS)
Datasheet MC74F569 DatasheetMC74F569 Datasheet (PDF)

4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) The MC54/ 74F568 and MC54/74F569 are fully synchronous, reversible counters with 3-state outputs. The F568 is a BCD decade counter; the F569 is a binary counter. They feature preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry (CC) and Terminal C.

  MC74F569   MC74F569


Document
4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) The MC54/ 74F568 and MC54/74F569 are fully synchronous, reversible counters with 3-state outputs. The F568 is a BCD decade counter; the F569 is a binary counter. They feature preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry (CC) and Terminal Count (TC) outputs. All state changes except Master Reset are initiated by the rising edge of the clock. A HIGH signal on the Output Enable (OE) input forces the output buffers into the high impedance state but does not prevent counting, resetting or parallel loading. MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) FAST™ SCHOTTKY TTL • 4-Bit Bidirectional Counting • • • • • • F568 Decade Counter F569 Binary Counter Synchronous Counting and Loading Lookahead Carry Capability for Easy Cascading Preset Capability for Programmable Operation 3-State Outputs for Bus Organized Systems Master Reset (MR) Overrides All Other Inputs Synchronous Reset (SR) Overrides Counting and Parallel Loading 20 1 J SUFFIX CERAMIC CASE 732-03 20 1 N SUFFIX PLASTIC CASE 738-03 CONNECTION DIAGRAM VCC TC 20 19 CC 18 OE 17 O0 16 O1 15 O2 14 O3 CET 13 12 PE 11 20 1 DW SUFFIX SOIC CASE 751D-03 ORDERING INFORMATION MC54FXXXJ Ceramic MC74FXXXN Plastic MC74FXXXDW SOIC 1 U/D 2 CP 3 P0 4 P1 5 P2 6 P3 8 7 CEP MR 9 10 SR GND LOGIC SYMBOL 11 3 4 5 6 P3 PE P0 P1 P2 1 7 12 2 17 U/D CEP CC CET TC CP OE MR SR 8 9 O0 O1 O2 O3 16 15 14 13 18 19 FAST AND LS TTL DATA 4-220 MC54/74F568 • MC54/74F569 Symbol VCC TA IOH IOL Supply Voltage Operating Ambient Temperature Range Output Current — High Output Current — Low Parameter 54, 74 54 74 54, 74 54, 74 Min 4.5 – 55 0 Typ 5.0 25 25 Max 5.5 125 70 – 3.0 24 Unit V °C mA mA FUNCTIONAL DESCRIPTION The F568 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9.The F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15. The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occur synchronously with the LOWto-HIGH transition of the Clock Pulse (CP) input signal. The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs — Master Reset (MR), Synchronous Reset (SR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) — plus the Up/Down (U/D) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With MR, SR and PE HIGH, CEP and CET permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits counting. The F568 and F569 use edge-triggered flip-flops and changing the SR, PE, CEP , CET or U/D inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed. Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally HIGH and goes LOW providing CET is LOW, when the counter reaches zero in the Down mode, or reaches maximum (9 for the F568,15 for the F569) in the Up mode. TC will then remain LOW until a state change occurs, whether by counting or presetting, or until U/D or CET is changed. To implement synchronous multistage counters, the connections between the TC output and the CEP and CET inputs can provide either slow or fast carry propagation. Figure A shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cumulative CET to TC delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure B are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 10 (F568) or 16 (F569) clocks to complete, there is plenty of time for the ripple to progress through the .


MC74F568 MC74F569 MC74F544


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)