DatasheetsPDF.com

NDB6050L Dataheets PDF



Part Number NDB6050L
Manufacturers Fairchild
Logo Fairchild
Description N-Channel MOSFET
Datasheet NDB6050L DatasheetNDB6050L Datasheet (PDF)

April 1996 NDP6050L / NDB6050L N-Channel Logic Level Enhancement Mode Field Effect Transistor General Description These logic level N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are parti.

  NDB6050L   NDB6050L


Document
April 1996 NDP6050L / NDB6050L N-Channel Logic Level Enhancement Mode Field Effect Transistor General Description These logic level N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed. Features 48A, 50V. RDS(ON) = 0.025Ω @ VGS = 5V. Low drive requirements allowing operation directly from logic drivers. VGS(TH) < 2.0V. Critical DC electrical parameters specified at elevated temperature. Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor. 175°C maximum junction temperature rating. High density cell design for extremely low RDS(ON). TO-220 and TO-263 (D2PAK) package for both through hole and surface mount applications. _______________________________________________________________________________ D G S Absolute Maximum Ratings Symbol VDSS VDGR VGSS ID Parameter Drain-Source Voltage T C = 25°C unless otherwise noted NDP6050L 50 50 ± 16 ± 25 48 144 100 0.67 -65 to 175 275 NDB6050L Units V V V Drain-Gate Voltage (RGS < 1 MΩ) Gate-Source Voltage - Continuous - Nonrepetitive (tP < 50 µs) Drain Current - Continuous - Pulsed A PD Total Power Dissipation @ TC = 25°C Derate above 25°C W W/°C °C °C TJ,TSTG TL Operating and Storage Temperature Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds © 1997 Fairchild Semiconductor Corporation NDP6050L Rev. C / NDB6050L Rev. D Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Parameter Conditions Min Typ Max Units DRAIN-SOURCE AVALANCHE RATINGS (Note 1) W DSS IAR BVDSS IDSS IGSSF IGSSR VGS(th) RDS(ON) Single Pulse Drain-Source Avalanche Energy VDD = 25 V, ID = 48 A 200 48 mJ A Maximum Drain-Source Avalanche Current OFF CHARACTERISTICS Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current VGS = 0 V, ID = 250 µA VDS = 50 V, VGS = 0 V TJ = 125°C Gate - Body Leakage, Forward Gate - Body Leakage, Reverse VGS = 16 V, VDS = 0 V VGS = -16 V, VDS = 0 V VDS = VGS, ID = 250 µA TJ = 125°C Static Drain-Source On-Resistance VGS = 5 V, ID = 24 A TJ = 125°C VGS = 10 V, ID = 24 A ID(on) gFS On-State Drain Current Forward Transconductance VGS = 5 V, VDS = 10 V VDS = 10 V, ID = 24 A VDS = 25 V, VGS = 0 V, f = 1.0 MHz 48 10 1 0.65 50 250 1 100 -100 V µA mA nA nA ON CHARACTERISTICS (Note 1) Gate Threshold Voltage 2 1.5 0.025 0.04 0.02 A S V Ω DYNAMIC CHARACTERISTICS Ciss Coss Crss tD(on) tr tD(off) tf Qg Qgs Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance 1630 460 150 2000 800 400 pF pF pF SWITCHING CHARACTERISTICS (Note 1) Turn - On Delay Time Turn - On Rise Time Turn - Off Delay Time Turn - Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge VDS = 48 V, ID = 48 A, VGS = 5 V VDD = 30 V, ID = 48 A, VGS = 5 V, RGEN = 15 Ω, RGS = 15 Ω 15 320 49 161 36 8.2 21 30 500 100 300 60 nS nS nS nS nC nC nC NDP6050L Rev. C / NDB6050L Rev. D Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Parameter Conditions Min Typ Max Units DRAIN-SOURCE DIODE CHARACTERISTICS IS ISM VSD Maximum Continuos Drain-Source Diode Forward Current Maximum Pulsed Drain-Source Diode Forward Current Drain-Source Diode Forward Voltage VGS = 0 V, IS = 24 A (Note 1) TJ = 125°C trr Irr Reverse Recovery Time Reverse Recovery Current VGS = 0 V, IF = 48 A, dIF/dt = 100 A/µs 35 2 75 3.6 48 144 1.3 1.2 140 8 ns A A A V THERMAL CHARACTERISTICS RθJC RθJA Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient 1.5 62.5 °C/W °C/W Note: 1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%. NDP6050L Rev. C / NDB6050L Rev. D Typical Electrical Characteristics 100 2 VGS = 10V I D , DRAIN-SOURCE CURRENT (A) 80 6.0 4.5 R DS(on) , NORMALIZED DRAIN-SOURCE ON-RESISTANCE V 5.0 GS = 3.0V 3.5 4.0 1 .5 60 4.5 5.0 5.5 1 4.0 3.5 3.0 2.5 40 6.0 10 20 0 0 1 2 3 VDS , DRAIN-SOURCE VOLTAGE (V) 4 5 0 .5 0 20 I D 40 60 80 100 , DRAIN CURRENT (A) Figure 1. On-Region Characteristics Figure 2. On-Resistance Variation with Gate Voltage and Drain Current 2 2 I D = 24A DRAIN-SOURCE ON-RESISTANCE VGS = 5.0V DRAIN-SOURCE ON-RESISTANCE 1.8 1.6 1.4 1.75 V GS = 5V R DS(on), NORMALIZED TJ = 125°C R DS(ON), NORMALIZED 1.5 1.25 25°C 1.2 1 0.8 0.6 1 0.75 -55°C 0.5 -50 -25 0 25 50 75 100 125 T J , JUNCTION TEMPERATURE (°C) 150 175 0 20 40 60 80 100 I D , DRAIN CURRENT (A) Figure 3. On-Resistance Variation with Temperature Figure 4. On-Resistance Variation with Drain Current and Tem.


NDB6050 NDB6050L NDB6051


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)