DatasheetsPDF.com

SMP50-240 Dataheets PDF



Part Number SMP50-240
Manufacturers STMicroelectronics
Logo STMicroelectronics
Description TELECOM EQUIPMENT PROTECTION: TRISIL
Datasheet SMP50-240 DatasheetSMP50-240 Datasheet (PDF)

® SMP50-xxx TELECOM EQUIPMENT PROTECTION: TRISIL™ FEATURES s s s s s s Bidirectional crowbar protection Voltage range from 62V to 270V Low capacitance from 15pF to 30pF typ.@ 50V Low leakage current: IR = 2µA max. Holding current: IH = 150 mA min. Repetitive peak pulse current: IPP = 50 A (10/1000 µs) SMA (JEDEC DO-214AC) MAIN APPLICATIONS Telecommunication equipment such as Analog and digital line cards (xDSL, T1/E1, ISDN...). Terminals (phone, fax, modem...) and central office equipme.

  SMP50-240   SMP50-240


Document
® SMP50-xxx TELECOM EQUIPMENT PROTECTION: TRISIL™ FEATURES s s s s s s Bidirectional crowbar protection Voltage range from 62V to 270V Low capacitance from 15pF to 30pF typ.@ 50V Low leakage current: IR = 2µA max. Holding current: IH = 150 mA min. Repetitive peak pulse current: IPP = 50 A (10/1000 µs) SMA (JEDEC DO-214AC) MAIN APPLICATIONS Telecommunication equipment such as Analog and digital line cards (xDSL, T1/E1, ISDN...). Terminals (phone, fax, modem...) and central office equipment. s s SCHEMATIC DIAGRAM DESCRIPTION The SMP50-xxx series has been designed to protect telecommunication equipment against lightning and transient induced by AC power lines. The package / die size ratio has been optimized by using the SMA package. BENEFITS Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. Trisils are used to help equipment to meet various standards such as UL1950, IEC950 / CSA C22.2, UL1459 and FCC part 68. Trisils have UL94 V0 resin approved. SMA package is JEDEC registred. (Trisils are UL 497B approved - file: E136224). November 2002 - Ed: 3B 1/8 SMP50-xxx IN COMPLIANCES WITH THE FOLLOWING STANDARDS Standard GR-1089 Core First level GR-1089 Core Second level GR-1089 Core Intra-building ITU-T-K20 / K21 ITU-T-K20 (IEC61000-4-2) VDE0433 VDE0878 IEC61000-4-5 FCC Part 68, lightning surge type A FCC Part 68, lightning surge type B THERMAL RESISTANCES Symbol Rth (j-a) Rth (j-l) Parameter Junction to ambient with recommended footprint Junction to leads Value 120 30 Unit °C/W °C/W Peak Surge Voltage (V) 2500 1000 5000 1500 6000 1500 6000 8000 4000 2000 4000 2000 4000 4000 1500 800 1000 Voltage Waveform (µs) 2/10 10/1000 2/10 2/10 10/700 1/60 ns 10/700 1.2/50 10/700 1.2/50 10/160 10/560 9/720 Required peak current (A) 500 100 500 100 150 37.5 Current Waveform (µs) 2/10 10/1000 2/10 2/10 5/310 Minimum serial resistor to meet standard (Ω) 12 10 24 0 53 0 0 0 21.5 0 0 0 21.5 0 12.5 6.5 0 ESD contact discharge ESD air discharge 100 50 100 50 100 100 200 100 25 5/310 1/20 5/310 8/20 10/160 10/560 5/320 ELECTRICAL CHARACTERISTICS (Tamb = 25°C) Symbol VRM IRM VR VBR VBO IH IBO IPP C 2/8 Parameter Stand-off voltage Leakage current at VRM Continuous reverse voltage Breakdown voltage Breakover voltage Holding current Breakover current Peak pulse current Capacitance SMP50-xxx ABSOLUTE RATINGS (Tamb = 25°C) Symbol Parameter Repetitive peak pulse current: 10/1000 µs 8/20 µs 10/560 µs 5/310 µs 10/160 µs 1/20 µs 2/10 µs Fail safe mode: maximum current (note 1) Non repetitive surge peak on-state current (Sinusoidal) 8/20 µs t = 20ms t = 16.6ms t = 0.2s t = 2s t = 16.6ms t = 20ms 50 100 55 65 75 100 150 2.5 25 28 16 8.5 6.5 6.3 260 - 55 to + 150 150 Value Unit IPP A IFS ITSM kA A I²t TL Tstg Tj I²t value for fusing Maximum lead temperature for soldering during 10 s. Storage temperature range Maximum junction temperature A²s °C °C °C Repetitive peak pulse current tr: rise time (µs) tp: pulse duration time (µs) ex: Pulse waveform 10/1000µs tr = 10µs % IPP 100 50 0 tr tp t tp = 1000µs 3/8 SMP50-xxx ELECTRICAL PARAMETERS (Tamb = 25°C) Type IRM @ VRM max IR @ VR MAX Note 1 µA V µA V DYNAMIC VBO @ IBO max Note 2 V mA STATIC VBO @ IBO max Note 3 V mA IH min C typ. C typ. Note 4 Note 5 Note 6 mA pF pF SMP50-62 SMP50-68 SMP50-100 SMP50-120 SMP50-130 SMP50-180 SMP50-200 SMP50-220 SMP50-240 SMP50-270 Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: 56 61 90 108 2 117 162 180 198 216 243 50 62 68 100 120 130 180 200 220 240 270 85 93 135 160 173 235 262 285 300 350 800 82 90 133 160 173 240 267 293 320 360 800 150 150 150 150 150 150 150 150 150 150 30 30 20 20 20 15 15 15 15 15 50 45 40 40 35 30 30 30 30 30 IR measured at VR guarantee VBRmin ≥ VR See functional breakover voltage test circuit 1. See test circuit 2. See functional holding current test circuit 3. VR = 50V bias,VRMS = 1V, F = 1MHz. VR = 2V bias, VRMS = 1V, F = 1MHz Fig. 1: Non repetitive surge peak on-state current versus overload duration (Tj initial = 25°C) ITSM(A) 40 30 20 F=50Hz Fig. 2: On-state voltage versus on-state current (typical values). IT(A) 50 Tj=25°C 20 10 5 10 2 t(s) 0 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 VT(V) 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 4/8 SMP50-xxx Fig. 3: Relative variation of holding current versus junction temperature. IH[Tj] / IH[Tj=25°C] 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 1.08 1.06 1.04 1.02 1.00 0.98 Fig. 4: Relative variation of breakover voltage versus junction temperature. VBO[Tj] / VBO[Tj=25°C] Tj(°C) -20 0 20 40 60 80 100 120 0.96 0.94 -40 -20 0 20 Tj(°C) 40 60 80 100 120 Fig. 5: Relative variation of leakage current versus junction temperature (typical values). IRM[Tj] / IRM[Tj=25°C] 2000 1000 VR=VRM Fig. 6: Relative variation of thermal impedance versus pulse duration. Zth(j-a)(°C/W) 200 Zth(j-a) 100 100 10 10 Tj(°C) 1 25 50 75 100 125 tp (s) 1 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2 Fig. 7: Relative variation of jun.


SMP50-220 SMP50-240 SMP50-270


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)