DatasheetsPDF.com

SN74LS162A Dataheets PDF



Part Number SN74LS162A
Manufacturers Motorola
Logo Motorola
Description BCD DECADE COUNTERS / 4-BIT BINARY COUNTERS
Datasheet SN74LS162A DatasheetSN74LS162A Datasheet (PDF)

BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A / 161A / 162A / 163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks for counting, memory addressing, frequency division and other applications. The LS160A and LS162A count modulo 10 (BCD). The LS161A and LS163A count modulo 16 (binary.) The LS160A and LS161A have an asynchronous Master Reset (Clear) input that overrides, and is independent of, the clock and al.

  SN74LS162A   SN74LS162A


Document
BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A / 161A / 162A / 163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks for counting, memory addressing, frequency division and other applications. The LS160A and LS162A count modulo 10 (BCD). The LS161A and LS163A count modulo 16 (binary.) The LS160A and LS161A have an asynchronous Master Reset (Clear) input that overrides, and is independent of, the clock and all other control inputs. The LS162A and LS163A have a Synchronous Reset (Clear) input that overrides all other control inputs, but is active only during the rising clock edge. BCD (Modulo 10) Binary (Modulo 16) Asynchronous Reset LS160A LS161A Synchronous Reset LS162A LS163A • Synchronous Counting and Loading • Two Count Enable Inputs for High Speed Synchronous Expansion • Terminal Count Fully Decoded • Edge-Triggered Operation • Typical Count Rate of 35 MHz • ESD > 3500 Volts CONNECTION DIAGRAM DIP (TOP VIEW) VCC TC Q0 Q1 Q2 Q3 CET PE 16 15 14 13 12 11 10 9 1234 *R CP P0 P1 56 78 P2 P3 CEP GND NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A PIN NAMES PE P0 – P3 CEP CET CP MR SR Q0 – Q3 TC Parallel Enable (Active LOW) Input Parallel Inputs Count Enable Parallel Input Count Enable Trickle Input Clock (Active HIGH Going Edge) Input Master Reset (Active LOW) Input Synchronous Reset (Active LOW) Input Parallel Outputs (Note b) Terminal Count Output (Note b) LOADING (Note a) HIGH LOW 1.0 U.L. 0.5 U.L. 0.5 U.L. 1.0 U.L. 0.5 U.L. 0.5 U.L. 1.0 U.L. 10 U.L. 10 U.L. 0.5 U.L. 0.25 U.L. 0.25 U.L. 0.5 U.L. 0.25 U.L. 0.25 U.L. 0.5 U.L. 5 (2.5) U.L. 5 (2.5) U.L. NOTES: a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW. b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. SN54/74LS160A SN54/74LS161A SN54/74LS162A SN54/74LS163A BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS LOW POWER SCHOTTKY 16 1 J SUFFIX CERAMIC CASE 620-09 16 1 N SUFFIX PLASTIC CASE 648-08 16 1 D SUFFIX SOIC CASE 751B-03 ORDERING INFORMATION SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC LOGIC SYMBOL 934 56 PE P0 P1 P2 P3 7 CEP 10 CET TC 15 2 CP *R Q0 Q1 Q2 Q3 1 14 13 12 11 VCC = PIN 16 GND = PIN 8 *MR for LS160A and LS161A *SR for LS162A and LS163A FAST AND LS TTL DATA 5-278 SN54/74LS160A • SN54/74LS161A SN54/74LS162A • SN54/74LS163A STATE DIAGRAM LS160A • LS162A 0123 15 14 13 12 11 10 9 4 5 6 7 8 LS161A • LS163A 01234 15 5 14 6 13 7 12 11 10 9 8 LOGIC EQUATIONS Count Enable = CEP • CET • PE TC for LS160A & LS162A = CET • Q0 • Q1 • Q2 • Q3 TC for LS161A & LS163A = CET • Q0 • Q1 • Q2 • Q3 Preset = PE • CP + (rising clock edge) Reset = MR (LS160A & LS161A) Reset = SR • CP + (rising clock edge) Reset = (LS162A & LS163A) NOTE: The LS160A and LS162A can be preset to any state, but will not count beyond 9. If preset to state 10, 11, 12, 13, 14, or 15, it will return to its normal sequence within two clock pulses. FUNCTIONAL DESCRIPTION The LS160A / 161A / 162A / 163A are 4-bit synchronous counters with a synchronous Parallel Enable (Load) feature. The counters consist of four edge-triggered D flip-flops with the appropriate data routing networks feeding the D inputs. All changes of the Q outputs (except due to the asynchronous Master Reset in the LS160A and LS161A) occur as a result of, and synchronous with, the LOW to HIGH transition of the Clock input (CP). As long as the set-up time requirements are met, there are no special timing or activity constraints on any of the mode control or data inputs. Three control inputs — Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) — select the mode of operation as shown in the tables below. The Count Mode is enabled when the CEP, CET, and PE inputs are HIGH. When the PE is LOW, the counters will synchronously load the data from the parallel inputs into the flip-flops on the LOW to HIGH transition of the clock. Either the CEP or CET can be used to inhibit the count sequence. With the PE held HIGH, a LOW on either the CEP or CET inputs at least one set-up time prior to the LOW to HIGH clock transition will cause the existing output states to be retained. The AND feature of the two Count Enable inputs (CET • CEP) allows synchronous cascading without external gating and without delay accumulation over any practical number of bits or digits. The Terminal Count (TC) output is HIGH when the Count Enable Trickle (CET) input is HIGH while the counter is in its maximum count state (HLLH for the BCD counters, HHHH for the Binary counters). Note that TC is fully decoded and will, therefore, be HIGH only for one count state. The LS160A and LS162A count modulo 10 following a binary coded decimal (BCD) sequence. They generate a TC output when the CET input is HIGH while the counter is in state 9 (.


SN54LS162A SN74LS162A SN74LS163A


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)