DatasheetsPDF.com

IRF6662TRPbF Dataheets PDF



Part Number IRF6662TRPbF
Manufacturers IRF
Logo IRF
Description Power MOSFET
Datasheet IRF6662TRPbF DatasheetIRF6662TRPbF Datasheet (PDF)

PD - 97243A DirectFET™ Power MOSFET RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques IRF6662PbF IRF6662TRPbF RDS(on) 17.5mΩ@ 10V Typical values (unless otherwise specified) VDSS Qg tot VGS Qgd 6.8nC 100V ma.

  IRF6662TRPbF   IRF6662TRPbF



Document
PD - 97243A DirectFET™ Power MOSFET RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques IRF6662PbF IRF6662TRPbF RDS(on) 17.5mΩ@ 10V Typical values (unless otherwise specified) VDSS Qg tot VGS Qgd 6.8nC 100V max ±20V max Qgs2 1.2nC Qrr 50nC Qoss 11nC Vgs(th) 3.9V 22nC S D G S D MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MZ DirectFET™ ISOMETRIC Description The IRF6662PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6662PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR 100 Typical RDS(on) (mΩ) Max. 100 ±20 8.3 6.6 47 66 39 4.9 VGS, Gate-to-Source Voltage (V) Units V Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0 5 ID= 4.9A A mJ A 80 60 40 20 0 4 6 8 10 T J = 25°C 12 T J = 125°C ID = 4.9A VDS= 80V VDS= 50V VDS= 20V 14 16 10 15 20 25 VGS, Gate -to -Source Voltage (V) QG Total Gate Charge (nC) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 3.2mH, RG = 25Ω, IAS = 4.9A. www.irf.com 1 08/25/06 http://www.Datasheet4U.com IRF6662PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Coss Coss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Min. 100 ––– ––– 3.0 ––– ––– ––– ––– ––– 11 ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.10 17.5 3.9 -9.7 ––– ––– ––– ––– ––– 22 4.9 1.2 6.8 9.1 8.0 11 1.2 11 7.5 24 5.9 1360 270 61 1340 160 Max. ––– ––– 22 4.9 ––– 20 250 100 -100 ––– 31 ––– ––– 10 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Units V V/°C mΩ V mV/°C µA nA S Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 8.2A VDS = VGS, ID = 100µA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 10V, ID = 4.9A VDS = 50V nC VGS = 10V ID = 4.9A See Fig. 15 nC Ω VDS = 16V, VGS = 0V VDD = 50V, VGS = 10V ID = 4.9A ––– ––– ––– ––– ––– ––– ––– ––– ––– ns RG=6.2Ω See Fig. 17 VGS = 0V pF VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz VGS = 0V, VDS = 80V, f=1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ––– ––– ––– ––– 34 50 1.3 51 75 V ns nC ––– ––– 66 Min. ––– Typ. ––– Max. 2.5 Units A Conditions MOSFET symbol showing the inte.


IRF6662PbF IRF6662TRPbF IRF6775MTRPbF


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)