DatasheetsPDF.com

BB302C Dataheets PDF



Part Number BB302C
Manufacturers Hitachi
Logo Hitachi
Description Build in Biasing Circuit MOS FET IC UHF RF Amplifier
Datasheet BB302C DatasheetBB302C Datasheet (PDF)

BB302C Build in Biasing Circuit MOS FET IC VHF RF Amplifier ADE-208-573 A (Z) 2nd. Edition September 1997 Features • Build in Biasing Circuit; To reduce using parts cost & PC board space. • Low noise characteristics; (NF = 1.7 dB typ. at f = 200 MHz) • Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 240V at C=200pF, Rs=0 conditions. • Provide mini mold packages; CMPAK-4(SOT-343mod) Outline CMPAK-4 2 3 1 4 1. Source 2. Gate1 3. Gate2 4. Drain • Note 1 Marking is “BW–”. • N.

  BB302C   BB302C


Document
BB302C Build in Biasing Circuit MOS FET IC VHF RF Amplifier ADE-208-573 A (Z) 2nd. Edition September 1997 Features • Build in Biasing Circuit; To reduce using parts cost & PC board space. • Low noise characteristics; (NF = 1.7 dB typ. at f = 200 MHz) • Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 240V at C=200pF, Rs=0 conditions. • Provide mini mold packages; CMPAK-4(SOT-343mod) Outline CMPAK-4 2 3 1 4 1. Source 2. Gate1 3. Gate2 4. Drain • Note 1 Marking is “BW–”. • Note 2 BB302C is individual type number of HITACHI BBFET. BB302C Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate1 to source voltage Symbol VDS VG1S VG2S ID Pch Tch Tstg Ratings 12 +10 –0 Gate2 to source voltage Drain current Channel power dissipation Channel temperature Storage temperature ±10 25 100 150 –55 to +150 V mA mW °C °C Unit V V Electrical Characteristics (Ta = 25°C) Item Drain to source breakdown voltage Gate1 to source breakdown voltage Gate2 to source breakdown voltage Gate1 to source cutoff current I G1SS Gate2 to source cutoff current I G2SS Gate1 to source cutoff voltage VG1S(off) Gate2 to source cutoff voltage VG2S(off) Drain current I D(op) — — +100 ±100 1.0 nA V(BR)G2SS ±10 — — V V(BR)G1SS +10 — — V Symbol V(BR)DSS Min 12 Typ — Max — Unit V Test Conditions I D = 200µA VG1S = VG2S = 0 I G1 = +10 µA VG2S = VDS = 0 I G2 = ±10µA VG1S = VDS = 0 VG1S = +9V VG2S = VDS = 0 — — nA VG2S = ±9V VG1S = VDS = 0 0.4 — V VDS = 9V, VG2S = 6V I D = 100µA 0.4 — 1.0 V VDS = 9V, VG1S = 9V I D = 100µA 9 13 18 mA VDS = 9V, VG1 = 9V VG2S = 6V RG = 120kΩ Forward transfer admittance |yfs| 15 20 — mS VDS = 9V, VG1 = 9V VG2S =6V RG = 120kΩ, f = 1kHz Input capacitance Output capacitance c iss c oss 2.2 0.8 — 22 3.0 1.1 0.017 26 4.0 1.5 0.04 — pF pF pF dB VDS = 9V, VG1 = 9V VG2S =6V, RG = 120kΩ f = 1MHz VDS = 9V, VG1 = 9V VG2S =6V Noise figure NF — 1.7 2.2 dB RG = 120kΩ f = 200MHz Reverse transfer capacitance c rss Power gain PG BB302C Main Characteristics Test Circuit for Operating Items (I D(op) , |yfs|, Ciss, Coss, Crss, NF, PG) VG2 Gate 2 Gate 1 RG VG1 Drain A ID Source Application Circuit VAGC = 6 to 0.3 V BBFET V DS = 9 V RFC Output Input RG V GG = 9 V BB302C Maximum Channel Power Dissipation Curve Pch (mW) 200 I D (mA) 25 Typical Output Characteristics V G2S = 6 V V G1 = VDS 150 20 Channel Power Dissipation 15 100 Drain Current 10 50 5 RG 0 50 100 150 Ta (°C) 200 0 Ambient Temperature 2 4 6 Drain to Source Voltage Drain Current vs. Gate2 to Source Voltage 25 kΩ 68 k Ω Drain Current vs. Gate1 Voltage 20 I D (mA) V DS = 9 V R G = 100 k Ω 16 6V 5V 4V 3V 2V 8 I D (mA) 56 20 82 k Ω 100 k Ω 15 Drain Current 10 150 k Ω 180 k Ω 200 k Ω R G = 220 k Ω 5 Drain Current 120 k Ω 12 4 V DS = V G1 = 9 V 0 1.2 2.4 3.8 Gate2 to Source Voltage 4.8 6.0 VG2S (V) 0 2 4 6 8 V G1 (V) 10 Gate1 Voltage 56 k 68 Ω k 82 Ω k Ω kΩ 0 0 1 kΩ 0 2 1 kΩ 0 15 k Ω 8 1 0kΩ 220 0 kΩ = 27 8 10 V DS (V) V G2S = 1 V BB302C Drain Current vs. Gate1 Voltege 20 I D (mA) I D (mA) V DS = 9 V R G = 120 k Ω 6V 5V 4V 20 V DS = 9 V R G = 150 k Ω 16 6V 5V 4V 3V 2V V G2S = 1 V Drain Current vs. Gate1 Voltege 16 12 12 Drain Current 8 2V 4 3V Drain Current 8 V G2S = 1 V 4 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 Forward Transfer Admittance |y fs | (mS) 25 Forward Transfer Admittance |y fs | (mS) Forward Transfer Admittance vs. Gate1 Voltage V DS = 9 V R G = 100 k Ω 20 f = 1 kHz 6V 5V 4V 3V Forward Transfer Admittance vs. Gate1 Voltage 25 V DS = 9 V R G = 120 k Ω 20 f = 1 kHz 15 6V 5V 4V 3V 15 10 2V V G2S = 1 V 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 10 2V 5 5 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 BB302C Forward Transfer Admittance vs. Gate1 Voltage 25 V DS = 9 V R G = 150 k Ω f = 1 kHz Power Gain vs. Gate Resistance 30 25 Power Gain PG (dB) 20 15 10 5 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 0 10 V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 20 50 100 200 500 1000 Gate Resistance R G (k Ω ) Forward Transfer Admittance |y fs | (mS) 20 6V 5V 4V 3V 15 2V 10 5 Noise Figure vs. Gate Resistance 4 V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 30 25 Power Gain PG (dB) 20 15 10 5 0 10 Power Gain vs. Drain Current Noise Figure NF (dB) 3 2 1 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 5 10 15 20 25 30 20 50 100 200 500 1000 0 Gate Resistance R G (k Ω ) Drain Current I D (mA) BB302C Noise Figure vs. Drain Current 4 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 30 25 20 15 10 5 0 10 V DS = 9 V V G1 = 9 V V G2S = 6 V 20 50 100 200 500 1000 Drain Current vs. Gate Resistance 3 2 1 0 5 10 15 20 25 30 Drain Current I D (mA) Noise Figure NF (dB) Drain Current I D (mA) Gate Resistance R G (k Ω ) Gain Reduction vs. Gate2 to Source Voltage 60 Gain Reduction GR (dB) 50 40 30 20 10 Input Capacitance Ciss (pF) V DS = 9 V V G1 = 9 V V G2S = 6 V R G = 120 k Ω f = 200 MHz 6 5 4 3 2 1 0 1 2 3 4 5 6.


BB301M BB302C BB302M


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)