DatasheetsPDF.com

2SK740 Dataheets PDF



Part Number 2SK740
Manufacturers Hitachi Semiconductor
Logo Hitachi Semiconductor
Description Silicon N-Channel MOSFET
Datasheet 2SK740 Datasheet2SK740 Datasheet (PDF)

2SK740 Silicon N-Channel MOS FET Application High speed power switching Features • • • • • Low on-resistance High speed switching Low drive current No secondary breakdown Suitable for switching regulator, DC-DC converter and motor driver Outline TO-220AB D G 1 2 3 1. Gate 2. Drain (Flange) 3. Source S 2SK740 Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body to drain diode reverse drain current Channel dissipat.

  2SK740   2SK740


Document
2SK740 Silicon N-Channel MOS FET Application High speed power switching Features • • • • • Low on-resistance High speed switching Low drive current No secondary breakdown Suitable for switching regulator, DC-DC converter and motor driver Outline TO-220AB D G 1 2 3 1. Gate 2. Drain (Flange) 3. Source S 2SK740 Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body to drain diode reverse drain current Channel dissipation Channel temperature Storage temperature Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1% 2. Value at TC = 25°C Symbol VDSS VGSS ID I D(pulse)* I DR Pch* Tch Tstg 2 1 Ratings 150 ±20 10 40 10 50 150 –55 to +150 Unit V V A A A W °C °C Electrical Characteristics (Ta = 25°C) Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Symbol Min V(BR)DSS V(BR)GSS I GSS 150 ±20 — — 2.0 — 4.0 — — — — — — — — — Typ — — — — — 0.12 7.0 1200 550 85 20 50 70 40 1.2 220 Max — — ±10 250 4.0 0.15 — — — — — — — — — — Unit V V µA µA V Ω S pF pF pF ns ns ns ns V ns I F = 10 A, VGS = 0 I F = 10 A, VGS = 0, diF/dt = 50 A/µs I D = 5 A, VGS = 10 V, RL = 6 Ω Test conditions I D = 10 mA, VGS = 0 I G = ±100 µA, VDS = 0 VGS = ±16 V, VDS = 0 VDS = 120 V, VGS = 0 I D = 1 mA, VDS = 10 V I D = 5 A, VGS = 10 V *1 I D = 5 A, VDS = 10 V *1 VDS = 10 V, VGS = 0, f = 1 MHz Zero gate voltage drain current I DSS Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Body to drain diode forward voltage Body to drain diode reverse recovery time Note: 1. Pulse test VGS(off) RDS(on) |yfs| Ciss Coss Crss t d(on) tr t d(off) tf VDF t rr 2 2SK740 Power vs. Temperature Derating 60 Channel Dissipation Pch (W) 100 Maximum Safe Operation Area 10 Drain Current ID (A) 40 10 10 0 µs µs ) ) ot 5°C 2 Sh s m s (1 C = 1 m (T 10 ion t = ra PW pe O C D 20 1.0 Operation in this area is limited by RDS (on) Ta = 25°C 0.1 0 50 100 Case Temperature TC (°C) 150 1 10 100 1,000 Drain to Source Voltage VDS (V) Typical Output Characteristics 20 15V 10 V 8V 16 Drain Current ID (A) Pulse Test 6V Drain Current ID (A) 20 Typical Transfer Characteristics –25°C 16 V = 10 V DS Pulse Test 12 75°C TC = 25°C 12 5.5 V 8 5V 4 VGS = 4.5 V 0 4 8 12 16 Drain to Source Voltage VDS (V) 20 8 4 0 2 4 6 8 10 Gate to Source Voltage VGS (V) 3 2SK740 Drain to Source Saturation Voltage vs. Gate to Source Voltage 5 Drain to Source Saturation Voltage VDS (on) (V) PulseTest 4 Static Drain to Source on State Resistance RDS (on) (Ω) 0.5 VGS = 10 V Static Drain to Source on State Resistance vs. Drain Current 0.2 0.1 3 15 V 0.05 Pulse Test 2 ID = 10 A 1 5A 2A 0 4 8 12 16 Gate to Source Voltage VGS (V) 20 0.02 0.01 0.005 0.5 1.0 2 5 10 20 Drain Current ID (A) 50 Static Drain to Source on State Resistance vs. Temperature Static Drain to Source on State Resistance RDS (on) (Ω) VGS = 10 V Pulse Test 0.4 Forward Transfer Admittance yfs (S) 0.5 50 Forward Transfer Admittance vs. Drain Current 20 10 5 VGS = 10 V Pulse Test –25°C Ta = 25°C 75°C 0.3 10 A 0.2 5A 0.1 2A 2 1.0 0.5 0.2 0 –40 0 40 80 120 Case Temperature TC (°C) 160 0.5 1.0 2 5 Drain Current ID (A) 10 20 4 2SK740 Body to Drain Diode Reverse Recovery Time 500 Reverse Recovery Time trr (ns) 10,000 Typical Capacitance vs. Drain to Source Voltage VGS = 0 f = 1 MHz Ciss 1,000 Coss 200 100 50 di/dt = 50 A/µs VGS = 0 Ta = 25°C Pulse Test Capacitance C (pF) 20 10 5 0.5 100 Crss 1.0 2 5 10 20 Reverse Drain Current IDR (A) 50 10 0 10 20 30 40 Drain to Source Voltage VDS (V) 50 Dynamic Input Characteristics 200 Drain to Source Voltage VDS (V) 20 Gate to Source Voltage VGS (V) VDD = 100 V 50 V 120 25 V VDS VGS 12 500 Switching Characteristics VGS = 10 V VDD = 30 V PW = 2µs, duty < 1 % • • Switching Time t (ns) 160 16 200 100 50 tr td (off) tf td (on) 80 8 20 10 5 0.2 40 VDD = 100 V 50 V 25 V 8 ID = 10 A 4 0 16 24 32 Gate Charge Qg (nc) 0 40 0.5 1.0 2 5 10 Drain Current ID (A) 20 5 2SK740 Reverse Drain Current vs. Source to Drain Voltage 20 Reverse Drain Current IDR (A) Pulse Test 16 12 8 5 V, 10 V 4 VGS = 0, –5 V 0 0.4 0.8 1.2 1.6 2.0 Source to Drain Voltage VSD (V) Normalized Transient Thermal Impedance γS (t) Normalized Transient Thermal Impedance vs. Pulse Width 3 D=1 0.5 0.3 0.1 0.2 0.1 TC = 25°C 1.0 0.05 0.02 tP 1 0.0 Sho 1 0.03 0.01 10 µ uls e θch–c (t) = γS (t) · θch–c θch–c = 2.5°C/W, TC = 25°C PDM D = PW T PW T 1m 10 m Pulse Width PW (s) 100 m 1 10 100 µ Switching Time Test Circuit Vin Monitor Vout Monitor D.U.T RL Vin Vout 50 Ω Vin = 10 V . 30 V VDD = . td (on) 90 % tr 90 % td (off) tf 10 % 10 % 10 % Wavewforms 90 % 6 Unit: mm 11.5 MAX 2.79 ± 0.2 10.16 ± 0.2 9.5 8.0 φ 3.6 -0.08 +0.1 4.44 ± 0.2 1.26 ± 0.15 6.4 +0.2 –0.1 18.5 ± 0.5 15.0 ± 0.3 1.27 2.7 MAX 14.0 ± .


2SK735 2SK740 2SK771


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)