Home >> ATMEGA1280V Search >> ATMEL ATMEGA1280V Datasheet

ATMEGA1280V Datasheet

8-bit Atmel Microcontroller

No Preview Available !

ATMEGA1280V pdf
9.1.3 Pull-up and Bus-keeper
The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to one. To reduce
power consumption in sleep mode, it is recommended to disable the pull-ups by writing the Port register to zero
before entering sleep.
The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be disabled and enabled
in software as described in “XMCRB – External Memory Control Register B” on page 38. When enabled, the bus-
keeper will keep the previous value on the AD7:0 bus while these lines are tri-stated by the XMEM interface.
External Memory devices have different timing requirements. To meet these requirements, the XMEM interface
provides four different wait-states as shown in Table 9-3 on page 37. It is important to consider the timing specifica-
tion of the External Memory device before selecting the wait-state. The most important parameters are the access
time for the external memory compared to the set-up requirement. The access time for the External Memory is
defined to be the time from receiving the chip select/address until the data of this address actually is driven on the
bus. The access time cannot exceed the time from the ALE pulse must be asserted low until data is stable during a
read sequence (see tLLRL+ tRLRH - tDVRH in Tables 31-11 through Tables 31-18 on pages 367 - 370). The different
wait-states are set up in software. As an additional feature, it is possible to divide the external memory space in two
sectors with individual wait-state settings. This makes it possible to connect two different memory devices with dif-
ferent timing requirements to the same XMEM interface. For XMEM interface timing details, refer to Table 31-11 on
page 367 to Table 31-18 on page 370 and Figure 31-9 on page 370 to Figure 31-12 on page 372 in the “External
Data Memory Timing” on page 367.
Note that the XMEM interface is asynchronous and that the waveforms in the following figures are related to the
internal system clock. The skew between the internal and external clock (XTAL1) is not guarantied (varies between
devices temperature, and supply voltage). Consequently, the XMEM interface is not suited for synchronous
Figure 9-3.
External Data Memory Cycles without Wait-state (SRWn1=0 and SRWn0=0)(1)
T1 T2 T3 T4
System Clock (CLKCPU)
A15:8 Prev. addr.
DA7:0 Prev. data
Address XX
DA7:0 (XMBK = 0) Prev. data
DA7:0 (XMBK = 1) Prev. data
Address XXXXX
Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or SRW00 (lower sec-
tor). The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal or external).
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]

   PDF Click to Download PDF File

Related Start with ATMEGA1280*

[ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA128 ATMEL Corporation ]     [ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA1281 ATMEL Corporation ]     [ ATMEGA1281V ATMEL ]     [ ATMEGA1284 ATMEL Corporation ]     [ ATMEGA1284 ATMEL ]     [ ATMEGA1284P ATMEL Corporation ]     [ ATMEGA1284P ATMEL ]     [ ATMEGA1284RFR2 ATMEL ]    

Searches related to ATMEGA1280V part

Find Chips CBC RS online RUTRONIK 24
Component Distributors NexGen Digital Richardson RFPD ICC
Beyond Components NAC PEI-Genesis Powell Electronics
TME Ameya 360 Power & Signal Datasheets360
Freelance Electronics Sager Electronics Terminals & Connectors TTI

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
@ 2014 :: DatasheetsPDF.com :: Semiconductors Datasheet Search & Download Site