Home >> ATMEGA1280 Search >> ATMEL Corporation ATMEGA1280 Datasheet
ATMEGA1280 Datasheet
8-BIT Microcontroller
ATMEL Corporation
ATMEL Corporation


No Preview Available !

ATMEGA1280 pdf
ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
– in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing –
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16-bit or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before sub-
routines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, 0x20 - 0x5F. In addition, the ATmega640/1280/1281/2560/2561 has Extended I/O space from 0x60 -
0x1FF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.
7.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set Summary” on page 404 for a detailed
description.
7.4 Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the “Instruction Set Summary” on page 404. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact
code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014
12

ATMEGA1280 Datasheet PDF


Related Start with ATMEGA128*

[ ATMEGA128 ATMEL Corporation ]     [ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA1281 ATMEL Corporation ]     [ ATMEGA1281V ATMEL ]     [ ATMEGA1284 ATMEL Corporation ]     [ ATMEGA1284 ATMEL ]     [ ATMEGA1284P ATMEL Corporation ]     [ ATMEGA1284P ATMEL ]     [ ATMEGA1284RFR2 ATMEL ]     [ ATMEGA128A ATMEL Corporation ]     [ ATMEGA128L ATMEL Corporation ]     [ ATMEGA128RFA1 Atmel Corporation ]     [ ATMEGA128RFR2 ATMEL ]     [ ATMEGA128 ATMEL Corporation ]     [ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA1281 ATMEL Corporation ]     [ ATMEGA1281V ATMEL ]     [ ATMEGA1284 ATMEL Corporation ]     [ ATMEGA1284 ATMEL ]     [ ATMEGA1284P ATMEL Corporation ]     [ ATMEGA1284P ATMEL ]     [ ATMEGA1284RFR2 ATMEL ]    


Searches related to ATMEGA1280 part

Find Chips CBC RS online RUTRONIK 24
Component Distributors NexGen Digital Richardson RFPD ICC
Beyond Components NAC PEI-Genesis Powell Electronics
TME Ameya 360 Power & Signal Datasheets360
Freelance Electronics Sager Electronics Terminals & Connectors TTI

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
@ 2014 :: DatasheetsPDF.com :: Semiconductors Datasheet Search & Download Site