Home >> ATMEGA128 Search >> ATMEL Corporation ATMEGA128 Datasheet

ATMEGA128 Datasheet

8-bit Atmel Microcontroller

No Preview Available !

ATMEGA128 pdf
ATmega128
There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual interrupt vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the global interrupt enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.
Assembly Code Example
in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write
sbi EECR, EEWE
out SREG, r16 ; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
__disable_interrupt();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);
SREG = cSREG; /* restore SREG value (I-bit) */
2467X–AVR–06/11
15
ATMEL Corporation
ATMEL Corporation


PDF Click to Download PDF File

PDF View for Mobile



Related Start with ATMEGA12*

[ ATMEGA128 ATMEL Corporation ]     [ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA1281 ATMEL Corporation ]     [ ATMEGA1281V ATMEL ]     [ ATMEGA1284 ATMEL Corporation ]     [ ATMEGA1284 ATMEL ]     [ ATMEGA1284P ATMEL Corporation ]     [ ATMEGA1284P ATMEL ]     [ ATMEGA1284RFR2 ATMEL ]     [ ATMEGA128A ATMEL Corporation ]     [ ATMEGA128L ATMEL Corporation ]     [ ATMEGA128RFA1 Atmel Corporation ]     [ ATMEGA128RFR2 ATMEL ]     [ ATMEGA103 ATMEL Corporation ]     [ ATMEGA103L ATMEL Corporation ]     [ ATMEGA128 ATMEL Corporation ]     [ ATMEGA1280 ATMEL Corporation ]     [ ATMEGA1280V ATMEL ]     [ ATMEGA1281 ATMEL Corporation ]     [ ATMEGA1281V ATMEL ]     [ ATMEGA1284 ATMEL Corporation ]     [ ATMEGA1284 ATMEL ]     [ ATMEGA1284P ATMEL Corporation ]    


Searches related to ATMEGA128 part

Find Chips CBC RS online RUTRONIK 24
Component Distributors NexGen Digital Richardson RFPD ICC
Beyond Components NAC PEI-Genesis Powell Electronics
TME Ameya 360 Power & Signal Datasheets360
Freelance Electronics Sager Electronics Terminals & Connectors TTI

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
@ 2014 :: DatasheetsPDF.com :: Semiconductors Datasheet Search & Download Site