Home >> AD5660 Search >> Analog Devices AD5660 Datasheet

AD5660 Datasheet

12-/14-/16-Bit nanoDAC

No Preview Available !

AD5660 pdf
Data Sheet
AD5620/AD5640/AD5660
THEORY OF OPERATION
D/A SECTION
The AD5620/AD5640/AD5660 DACs are fabricated on a CMOS
process. The architecture consists of a string DAC followed by an
output buffer amplifier. The parts include an internal 1.25 V/2.5 V,
5 ppm/°C reference that is internally gained up by 2. Figure 39
shows a block diagram of the DAC architecture.
DAC REGISTER
VDD
REF (+)
RESISTOR
STRING
REF (–)
R
GND
Figure 39. DAC Architecture
R
VFB
VOUT
OUTPUT
AMPLIFIER
Because the input coding to the DAC is straight binary, the ideal
output voltage is given by
VOUT
=
2
×
VREFOUT
×

D
2N

where:
D is the decimal equivalent of the binary code that is loaded to
the DAC register.
0 to 4095 for AD5620 (12 bit)
0 to 16383 for AD5640 (14 bit)
0 to 65535 for AD5660 (16 bit)
N is the DAC resolution.
R
R
R TO OUTPUT
AMPLIFIER
R
R
Figure 40. Resistor String
RESISTOR STRING
The resistor string section is shown in Figure 40. It is simply a
string of resistors, each of value R. The code loaded to the DAC
register determines at which node on the string the voltage is
tapped off to be fed into the output amplifier. The voltage is
tapped off by closing one of the switches connecting the
string to the amplifier. Because it is a string of resistors, it is
guaranteed monotonic.
INTERNAL REFERENCE
The AD5620/AD5640/AD5660-1 parts include an internal,
1.25 V, 5 ppm/°C reference, giving a full-scale output voltage of
2.5 V. The AD5620/AD5640/AD5660-2-3 parts include an
internal, 2.5 V, 5 ppm/°C reference, giving a full-scale output
voltage of 5 V. The reference associated with each part is
available at the VREFOUT pin. A buffer is required if the reference
output is used to drive external loads. It is recommended that a
100 nF capacitor is placed between the reference output and
GND for reference stability.
OUTPUT AMPLIFIER
The output buffer amplifier can generate rail-to-rail voltages on
its output, which gives an output range of 0 V to VDD. This output
buffer amplifier has a gain of 2 derived from a 50 kΩ resistor
divider network in the feedback path. The inverting input of the
output amplifier is available to the user, allowing for remote
sensing. This VFB pin must be connected to VOUT for normal
operation. It can drive a load of 2 kΩ in parallel with 1000 pF to
GND. Figure 22 shows the source and sink capabilities of the
output amplifier. The slew rate is 1.5 V/µs with a ¼ to ¾ full-
scale settling time of 10 µs.
SERIAL INTERFACE
The AD5620/AD5640/AD5660 have a 3-wire serial interface
(SYNC, SCLK, and DIN) that is compatible with SPI, QSPI, and
MICROWIRE interface standards as well as most DSPs.
See Figure 2 for a timing diagram of a typical write sequence.
The write sequence begins by bringing the SYNC line low.
Data from the DIN line is clocked into the 16-bit shift register
(AD5620/AD5640) or the 24-bit shift register (AD5660) on the
falling edge of SCLK. The serial clock frequency can be as high
as 30 MHz, making the AD5620/AD5640/AD5660 compatible
with high speed DSPs. On the 16th falling clock edge (AD5620/
AD5640) or the 24th falling clock edge (AD5660), the last data
bit is clocked in and the programmed function is executed, that
is, a change in the DAC register contents and/or a change in the
mode of operation is executed. At this stage, the SYNC line can
be kept low or be brought high. In either case, it must be brought
high for a minimum of 33 ns before the next write sequence so
that a falling edge of SYNC can initiate the next write sequence.
Because the SYNC buffer draws more current when VIN = 2 V
than it does when VIN = 0.8 V, SYNC should be idled low between
write sequences for even lower power operation of the parts. As
is mentioned previously, however, SYNC must be brought high
again just before the next write sequence.
Rev. G | Page 17 of 28
Analog Devices
Analog Devices



   PDF Click to Download PDF File

   PDF View for Mobile





Related Start with AD566*

[ AD5660 Analog Devices ]     [ AD5662 Analog Devices ]     [ AD5663 Analog Devices ]     [ AD5663R Analog Devices ]     [ AD5664 Analog Devices ]     [ AD5664R Analog Devices ]     [ AD5665 Analog Devices ]     [ AD5665R Analog Devices ]     [ AD5666 Analog Devices ]     [ AD5667 Analog Devices ]     [ AD5667R Analog Devices ]     [ AD5668 Analog Devices ]     [ AD5669R Analog Devices ]     [ AD566A Analog Devices ]     [ AD566A Maxim Integrated Products ]     [ AD5601 Analog Devices ]     [ AD5602 Analog Devices ]     [ AD561 Analog Devices ]     [ AD5611 Analog Devices ]     [ AD5612 Analog Devices ]     [ AD562 Analog Devices ]     [ AD5620 Analog Devices ]     [ AD5621 Analog Devices ]     [ AD5622 Analog Devices ]     [ AD5623R Analog Devices ]    


Searches related to AD5660 part

Find Chips CBC RS online RUTRONIK 24
Component Distributors NexGen Digital Richardson RFPD ICC
Beyond Components NAC PEI-Genesis Powell Electronics
TME Ameya 360 Power & Signal Datasheets360
Freelance Electronics Sager Electronics Terminals & Connectors TTI

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
@ 2014 :: DatasheetsPDF.com :: Semiconductors Datasheet Search & Download Site