Home >> AD5170 Search >> Analog Devices AD5170 Datasheet
AD5170 Datasheet
I2C Digital Potentiometer
Analog Devices
Analog Devices


No Preview Available !

AD5170 pdf
AD5170
SD BIT
D7
D6
D5
D4
D3
D2
D1
D0
RS
RS
RS
A
W
RDAC
LATCH
AND
DECODER
RS
B
Figure 35. Equivalent RDAC Circuit
The general equation that determines the digitally programmed
output resistance between Terminal W and Terminal B is
RWB
(D)
=
D
256
× RAB
+
2 × RW
(1)
where:
D is the decimal equivalent of the binary code loaded in the
8-bit RDAC register.
RAB is the end-to-end resistance.
RW is the wiper resistance contributed by the on resistance of
the internal switch.
In summary, if RAB = 10 kΩ and Terminal A is open-circuited,
the output resistance, RWB, is set for the RDAC latch codes, as
shown in Table 7.
Table 7. Codes and Corresponding RWB Resistance
D (Dec) RWB (Ω) Output State
255
9961
Full scale (RAB − 1 LSB + RW)
128
5060
Midscale
1 139 1 LSB
0 100 Zero scale (wiper contact resistance)
Note that in the zero-scale condition, a finite wiper resistance of
100 Ω is present. Care should be taken to limit the current flow
between Terminal W and Terminal B in this state to a maximum
pulse current of no more than 20 mA. Otherwise, degradation
or possible destruction of the internal switch contact can occur.
Similar to the mechanical potentiometer, the resistance of the
RDAC between the wiper (Terminal W) and Terminal A also
produces a digitally controlled, complementary resistance, RWA.
When these terminals are used, Terminal B can be opened.
Setting the resistance value for RWA starts at a maximum value
of resistance and decreases as the data loaded in the latch
increases in value. The general equation for this operation is
RWA
(D)
=
256– D
256
× RAB
+
2
×
RW
(2)
For RAB = 10 kΩ and Terminal B open circuited, Table 8 shows
some examples of the output resistance (RWA) vs. the RDAC
latch codes.
Table 8. Codes and Corresponding RWA Resistance
D (Dec)
RWA (Ω)
Output State
255 139 Full scale
128
5060
Midscale
1
9961
1 LSB
0
10,060
Zero scale
Typical device-to-device matching is process-lot dependent
and can vary by up to ±30%. Because the resistance element is
processed using thin film technology, the change in RAB with
temperature has a very low 35 ppm/°C temperature coefficient.
PROGRAMMING THE POTENTIOMETER DIVIDER—
VOLTAGE OUTPUT OPERATION
The digital potentiometer easily generates a voltage divider at
wiper to B and wiper to A proportional to the input voltage at
A to B. Unlike the polarity of VDD to GND, which must be
positive, voltage across A to B, W to A, and W to B can be at
either polarity.
VI
A
W VO
B
Figure 36. Potentiometer Mode Configuration
If ignoring the effect of the wiper resistance for approximation,
connecting Terminal A to 5 V and Terminal B to ground pro-
duces an output voltage at the wiper to B starting at 0 V up to
1 LSB less than 5 V. Each LSB of voltage is equal to the voltage
applied across Terminal A and Terminal B divided by the 256
positions of the potentiometer divider. The general equation
defining the output voltage at VW with respect to ground for any
valid input voltage applied to Terminal A and Terminal B is
VW
(D)
=
D
256
VA
+
256 D
256
VB
(3)
For a more accurate calculation, which includes the effect of
wiper resistance, VW, the following equation can be used:
VW (D)
=
RWB (D)
RAB
VA
+
RWA (D)
RAB
VB
(4)
Operation of the digital potentiometer in divider mode results
in a more accurate operation over temperature. Unlike rheostat
mode, the output voltage is dependent mainly on the ratio of
the internal resistors, RWA and RWB, and not the absolute values.
Therefore, the temperature drift reduces to 15 ppm/°C.
Rev. G | Page 16 of 24

AD5170 Datasheet PDF



Related Start with AD517*

[ AD5170 Analog Devices ]     [ AD5171 Analog Devices ]     [ AD5172 Analog Devices ]     [ AD5173 Analog Devices ]     [ AD5174 Analog Devices ]     [ AD5175 Analog Devices ]     [ AD510 Analog Devices ]     [ AD5100 Analog Devices ]     [ AD5110 Analog Devices ]     [ AD5111 Analog Devices ]     [ AD5112 Analog Devices ]     [ AD5113 Analog Devices ]     [ AD5114 Analog Devices ]     [ AD5115 Analog Devices ]     [ AD5116 Analog Devices ]     [ AD5121 Analog Devices ]    


Searches related to AD5170 part

Find Chips CBC RS online RUTRONIK 24
Component Distributors NexGen Digital Richardson RFPD ICC
Beyond Components NAC PEI-Genesis Powell Electronics
TME Ameya 360 Power & Signal Datasheets360
Freelance Electronics Sager Electronics Terminals & Connectors TTI

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
@ 2014 :: DatasheetsPDF.com :: Semiconductors Datasheet Search & Download Site